Structural Stability: Theory and Implementation is a practical work that provides engineers and students in structural engineering or structured mechanics with the background needed to make the transition from fundamental theory to practical design rules and computer implementation. Beginning with the basic principles of structural stability and basic governing equations, Structural Stability is a concise and comprehensive introduction that applies the principles and theory of structural stability (which are the basis for structural steel design) to the solution of practical building frame design problems. Special features include: modern theories of structural stability of members and frames, and a discussion of how these theories may be utilized to provide design rules and calculation techniques for design important governing equations and the classical solutions used in design processes examples of analytical and numerical methods selected as the most useful and practically applicable methods available detailed information on the stability design rules of the 1986 AISC/LRFD Specifications for the design, fabrication, and erection of structural steel for buildings dual units (SI and English) with most of the material presented in a non-dimensional format fully worked examples, end-of-chapter problems, answers to selected problems, and clear illustrations and tables Am outstandingly practical resource, Structural Stability offers the reader an understanding of the fundamental principles and theory of structural stability not only in an idealized, perfectly elastic system, but also in an inelastic, imperfect system representative of the actual structural systems encountered in engineering practice.Structural Stability: Theory and Implementation is a practical work that provides engineers and students in structural engineering or structured mechanics with the background needed to make the transition from fundamental theory to ...

Title | : | Structural Stability |

Author | : | Wai-Fah Chen, E. M. Lui |

Publisher | : | Prentice Hall - 1987 |

Continue