The aim of this book is to introduce a range of combinatorial methods for those who want to apply these methods in the solution of practical and theoretical problems. Various tricks and techniques are taught by means of exercises. Hints are given in a separate section and a third section contains all solutions in detail. A dictionary section gives definitions of the combinatorial notions occurring in the book. Combinatorial Problems and Exercises was first published in 1979. This revised edition has the same basic structure but has been brought up to date with a series of exercises on random walks on graphs and their relations to eigenvalues, expansion properties and electrical resistance. In various chapters the author found lines of thought that have been extended in a natural and significant way in recent years. About 60 new exercises (more counting sub-problems) have been added and several solutions have been simplified.Since the component containing an has at least dn + 1 points, we have k alt; n a du a 1. Moreover, dk s die alt; k - 1, a contradiction [A. Bondy; see B]. 4. Suppose first that G1 contains an odd circuit C and that G1, G2 are connected. To follow theanbsp;...

Title | : | Combinatorial Problems and Exercises |

Author | : | L. Lovász |

Publisher | : | Elsevier - 2014-06-28 |

Continue